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On the persistence of trailing vortices
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The short-wave stability properties of a Batchelor vortex are used to explain the in-
trinsic resistance of vortices to turbulent diffusion. We show that turbulence produced
within the vortex core has to overcome a stabilizing ‘dispersion buffer’, where energy
of the perturbations is dispersed by inertial waves without interfering with the mean
flow, before they can reach the periphery of the vortex. While angular momentum
is maintained by this mechanism, the difference in energy extraction by turbulence
from the axial and tangential velocity fields due to a lack of alignment between the
mean and turbulent strain tensors, a typical effect of flow rotation or curvature, leads
to stabilization through a progressive damping of the axial shear in the vortex core.
We show that the efficiency of these stabilizing mechanisms depends on the swirl
number, the ratio between the maximum tangential velocity and the axial velocity
difference. If the swirl parameter is low enough, turbulence is able to reach the vortex
periphery and a small circulation overshoot develops, leading to weak diffusion of
angular momentum outward.

1. Introduction
A large body of experimental evidence shows that the wake vortices generated by

a lifting wing are usually very persistent, see e.g. Spalart (1998). They can only be
substantially perturbed by cooperative instabilities which result from the interaction
with neighbouring vortices. In the case of a single pair of vortices a distance b
apart, with equal or opposite circulation Γ and the same characteristic diameter, a,
cooperative instabilities are responsible for long- and short-wave instabilities, with
wavelengths of order b and a, respectively. The long-wave instability leads to the
connection of the vortices and to changes in the flow topology, Crow (1970), whereas
the short-wave instability distorts the vortices, Tsai & Widnall (1976). Short waves
are also responsible for the merging of co-rotating vortices at high Reynolds number
when the aspect ratio a/b is large enough (Le Dizès & Laporte 2002). When there
are more than two vortices, cooperative instabilities also develop and may trigger the
rapid disorganization of the vortex system, thought to be a possible mechanism for
accelerating the decay of aircraft wake vortices (Crouch 1997; Rennich & Lele 1998;
Fabre, Jacquin & Loof 2002).

The time required for a cooperative instability to develop is of order τb = (2πb2)/Γ .
When a� b, that is when the vortices are far from each other, if turbulence is present
in the vortex core or at its periphery, significant turbulent diffusion could take place on
the time scale τa = (2πa2)/Γ , which characterizes the convection time in the physical
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scale of the individual vortex. This may occur before any significant cooperative
instability develops. Three sources of turbulence may be considered. The first is the
lifting body wake which rolls up into the lift vortices. The propulsive jets may also
contribute in the case of an aircraft. These perturbations are somehow ingested
by the vortices during the roll-up of the wake. Secondly, turbulence may develop
inside the vortices through local instability mechanisms. For instance, a centrifugal
instability may develop if vorticity changes sign somewhere, and helical instabilities
may appear under the action of a significant axial flow. Lastly, turbulence may
be present in the ambient flow. In this case, turbulence macro-scales may contain
vorticity of the order of that in the vortices, and the vortices are thus rapidly
destroyed. Except in this last case, one must indeed ask why vortices are so resistant
to turbulent transport of angular momentum and why the evolution of turbulence
does not follow the traditional patterns encountered in free shear flows. There are two
possible explanations: either turbulence cannot survive in vortices or alternatively,
even if it is present, turbulence cannot transport angular momentum in or out of the
vortex. From inspection of the available measurements on lift vortices, one cannot
say unambiguously if they are laminar or turbulent because there is considerable
uncertainty due to spatial integration problems in the measurements and difficulties
in discriminating turbulence from vortex meandering (Devenport et al. 1996; Jacquin
et al. 2001). But we anticipate that the vortex resistance to turbulent spreading is
the mark of strong stabilizing effects imposed on turbulence by the flow rotation.
Understanding this problem is a key issue for numerical computation and modelling
of flows containing lift vortices, Zeman (1995), and for vortex control applications.
The basic mechanisms thought to be responsible for the strong stability of vortex
flows are explained by considering successively the linear properties of a Batchelor
vortex, DNS and experimental results.

2. The stabilizing effect of rotation in a vortex
The main mechanism that must be accounted for to understand turbulence in a

vortex is the coupling between rotation and shear. To this end, it may be useful to
consider an analogy between a two-dimensional vortex and a shear flow in solid body
rotation using a cylindrical coordinate system (r, θ, z) where the velocity components
are (U,V ,W ). In a vortex with no axial velocity, W = 0, turbulence is subjected to
a shear rate S = rd(V/r)/dr. This would correspond to the relative vorticity of a
rotating shear layer. Superposed on this field is an entrainment vorticity 2V/r. The
sum is the total, or absolute vorticity, ω = S + 2V/r = (1/r) d(rV )/dr. We know from
Lord Rayleigh’s work that such a flow becomes locally unstable as soon as the sign of
ω changes somewhere in the flow. In this case, a centrifugal instability occurs. From
the linearized Euler equations in which perturbations are considered proportional to
exp(ikz) exp(σt), it may be shown, see Ash & Khorrami (1995), that in the limit of
large k, the square of the temporal amplification rate of these instabilities is

σ2(r) = −2V

r
ω = − 1

r3

dΓ 2(r)

dr
, (2.1)

where k is the streamwise wavenumber. In (2.1), Γ (r) = rV is the angular momentum,
or circulation (the factor 2π is omitted) of the vortex at radius r. This criterion is
a particular case of a more general criterion for centrifugal-type instabilities which
holds in incompressible inviscid planar basic flows in a rotating frame and which
was established by Sipp & Jacquin (2000). If σ2 > 0 the flow is unstable; if σ2 < 0
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Figure 1. (a) Amplification rate σ2(r) of short-wave instabilities in a Batchelor vortex for q = 1.5,
1.25, 1, 0.7 and in a Lamb–Oseen vortex (q = ∞); (b) axial (z-component) vorticity fluctuation
field of the most amplified ring mode, i.e. |m| = 6, for q = 1 and Re = 2000. In (a) σ2(r) is
non-dimensionalized with V0 and r0 and values are divided by 10 for the Lamb–Oseen case. In (b),
the dotted and solid lines correspond to vorticity of opposite sign. The dotted circle corresponds to
the radius r = 1.121r0 where V = V0 = Vmax.

the flow is stable. In the latter case, perturbations are transformed into an inertial
wave regime which propagates in the vortex axis direction. Here, the expressions for σ
corresponding to the two equalities in (2.1) show the similitude between the principle
of ‘stratification’ of a shear flow by streamline curvature or by rotation, as described
by Bradshaw (1969), and the classical centrifugal instability. The first leads to the
Bradshaw–Richardson criterion (first equality) and the second the Rayleigh criterion
(second equality). Both expressions show that a centrifugal instability occurs whenever
ω changes sign somewhere. The Rayleigh criterion also shows that this corresponds
to an overshoot in the circulation profile (Γ dΓ/dr < 0). A particle displaced within
such a region will be expelled outward or inward due to an excess or a deficit of
angular momentum.

We turn our attention to a widely used model for axisymmetric vortices with no
axial velocity, the Lamb–Oseen vortex, with tangential velocity given by

V =
Γ0

2πr
(1− exp(−r2/r2

0)), (2.2)

where r0 denotes the initial vortex radius and Γ0 = limr→∞ 2πrV (r) is the vortex
circulation. The initial peak tangential velocity is denoted by V0 = Vmax. As shown
in figure 1(a), in a Lamb–Oseen vortex, the amplification rate σ is everywhere purely
imaginary which means that any perturbation will be dispersed into an inertial
wave regime with a frequency |σ| that increases towards the axis. This property,
which is responsible for the dispersion of the perturbations, prevents the vortex
from developing turbulence and protects its core from the influence of external
perturbations. At the periphery the flow is neutral and becomes a potential flow.
Now, if an axial flow is present, for instance a Gaussian jet or wake, with axial
velocity respectively given by

W = W0 ± ∆W exp(−r2/r2
0), (2.3)
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the instability properties of the flow change drastically. Equations (2.2) and (2.3)
correspond to a Batchelor vortex (Batchelor 1964), an asymptotic solution of a
spatially evolving vortex with an axial velocity excess or deficit. This flow is an
excellent idealized problem to study vortices with an axial velocity difference in
situations where the vortex behaves as a slender cylindrical flow. Here we neglect the
mean axial pressure gradient that exists in the spatially evolving vortex, a reasonable
hypothesis in several practical cases. The stability properties of the Batchelor vortex
are now well-established. At a sufficiently high Reynolds number, the stability is
controlled by the value of the swirl parameter, q, defined as

q =
Γ0

2πr0∆W
≈ 1.56

V0

∆W
, (2.4)

which measures the relative tangential and axial velocity intensity. The inviscid
stability theory considers perturbations proportional to exp i(kz + mθ) exp(σt) with
m the azimuthal wavenumber. It shows that the Batchelor vortex is unstable with
respect to azimuthal wavenumbers m < 0 for small enough swirl, q. The limit value
of q, given by Mayer & Powell (1992), Ash & Khorrami (1995) and Fabre & Jacquin
(2002), is approximately 1.5. For larger values, rotation stabilizes all perturbations in
an inviscid flow. More precisely, the perturbations are transformed into a regime of
inertial waves. Among the results of these stability studies, Leibovich & Stewartson
(1983) obtained an asymptotic instability criterion expressed as

σ2(r) =
2V (r)(r dV/dr − V )(V 2/r2 − (dV/dr)2 − (dW/dr)2)

(r dV/dr − V )2 + (r dW/dr)2
. (2.5)

A necessary condition for local instability is σ2(r) > 0. Leibovich & Stewartson’s
(1983) analysis shows that, in the limit k →∞, if there is a radius r where σ2 > 0, one
can construct modes which are localized in the vicinity of r and whose amplification
rate is equal to σ (ring modes). As a result, if σ2 > 0, a short-wave perturbation initially
located at radius r is expected to grow and eventually participate in a turbulent regime.
On the other hand, if σ2 < 0, a perturbation at radius r will not be amplified and will
be dispersed. Setting dW/dr = 0 (for all r) in (2.5) recovers (2.1) so that it becomes
appropriate then to view (2.5) as a sort of generalization of the Rayleigh criterion
of stability in which the effects of the axial flow are taken into account. Figure 1(a)
shows σ2 versus r for the Batchelor vortex and four different values of the swirl q.
For q = 1.5, σ2 is everywhere negative or null and the flow is entirely stable. More
precisely, the criterion predicts stability for q >

√
2 which is close to 1.5. For q = 1.25,

there is a small region within the core where the flow is unstable with respect to helical
modes (σ2 > 0). This region extends further for q = 1 and it occupies almost the
whole flow for q = 0.7. A ‘ring mode’ is shown in figure 1(b) where we have plotted
the axial (z-component) vorticity fluctuation field corresponding to the most amplified
helical mode, here |m| = 6, obtained for q = 1 and Re = 2000, see Fabre & Jacquin
(2002). Figure 1(a) highlights the stabilizing effect of rotation where it is seen that for
0.7 6 q 6 1.5, the external part of the vortex is surrounded by a ‘dispersion buffer’,
where σ2(r) < 0, that is where perturbations are transformed into non-amplified
propagating waves. The width of this region decreases with decreasing q, i.e. as the
jet or wake becomes stronger. For q = 0.7, the ‘dispersion buffer’ almost vanishes.
We think that the presence of this ‘dispersion buffer’ is fundamental in explaining why a
vortex is inefficient in transporting angular momentum even though its core may contain
perturbations. For q = 1, for instance, the perturbations that are produced inside the
core around r/r0 ≈ 0.75 must cross this stability region before they are able to diffuse
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further away. The perturbations are then transformed into neutral waves with a speed
that is proportional to |σ| with no energy exchange with the basic flow. This zone
is responsible for the confinement of turbulence within the core. In the core, the
energy of the axial flow is extracted preferentially by the instability and by turbulence
(see § 3) whereas in the ‘dispersion buffer’, where the velocity is mainly tangential,
the perturbations transported there propagate without modification of the mean
tangential flow. As a result, the axial velocity deficit (wake) or excess (jet) weakens
while the angular momentum is maintained; this results in an increase of the swirl
q(t) = Γ (t)/(2πr0(t)∆W (t)) which leads to elimination of turbulence production due
to increased stability. The LES and DNS calculations of Ragab & Sreedhar (1995),
Qin (1998), Sipp, Coppens & Jacquin (1999) and Pantano & Jacquin (2001) confirm
this scenario. They show a differential decay of the velocity components, an increase
of q and a progressive restabilization of the flow. This scenario is also suggested by
few experiments, such as the one that will be revisited in § 3. In the above discussion it
was assumed that asymptotic linear stability indicates how turbulence behaves within
the flow. An asymptotic short-wave analysis, such as that leading to (2.5), amounts to
considering perturbations whose scales are smaller than those of the variation of the
mean flow and it describes growing perturbations of infinitesimal initial strength. But
this also describes a mechanism which may entertain finite-amplitude perturbations
such as those of a fully developed turbulent field superposed on a basic, or Reynolds-
averaged, flow. It indicates where turbulent perturbations will be produced when the
mean flow remains unstable after saturation of the linear transient.

3. Numerical and experimental evidence
Let us consider the DNS results of Pantano & Jacquin (2001). This simulation

corresponds to a DNS of a Batchelor vortex with q = 1, starting from quasi-random
turbulent fluctuations of small intensity (2% of V0) using high-order of accuracy
finite differences. The resolution is 248× 248× 284 grid points with a domain of size
L1 = L2 = 64r0 and L3 = 12.36r0 in the axial direction. The Reynolds number based
on peak tangential velocity is Re = V0r0/ν = 2000. Further details can be found in
Pantano & Jacquin (2001). Figure 2 shows several quantities extracted from this DNS.
Figure 2(a) shows the evolution of the volume-integrated turbulent kinetic energy,
〈k〉, where 〈k〉 =

∫ ∞
0

2πrk(r, t) dr is the volume integral of the turbulent kinetic energy,
k(r, t). The non-dimensional time is defined as τ = tV0/2πr0. The same figure shows
the evolution of the swirl number, equation (2.4), with time. The level of turbulence
fluctuations increases from its initial low level, reaches a maximum at τ ≈ 4 and decay
gradually thereafter. In accordance with stability analysis the turbulent kinetic energy
starts to decrease approximately when the parameter q(τ) reaches a value of 1.5. This
confirms the restabilization of the flow due to the differential decay of the velocity
components. As far as turbulence correlations are concerned, this restabilization
mechanism may be understood as the result of a lack of alignment between the mean
and turbulent strain tensors due to the flow rotation or curvature. Figure 2(b) shows
the evolution with time of the integrated correlation between the rate of strain, Sij ,
and the Reynolds shear stress from the DNS for the angular, Rrθ , and axial, Rrz ,
turbulent stresses (Rrθ = uruθ and Rrz = uruz are the Reynolds stresses, ur , uθ and
uz being the velocity fluctuations in the radial, tangential and axial directions). The

correlation is defined as Cij = −〈RijSij〉/
√
〈R2

ij〉〈S2
ij〉 (repeated indexes do not imply

summation here). It can be observed that Crθ is low up to τ ' 3 while Crz is always
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Figure 2. (a) Volume-integrated turbulent kinetic energy 〈k〉 and swirl number q; (b) Reynolds
stress and rate of strain correlation coefficient as a function of time; (c) radial distribution of
the amplification rate σ2 of the short-wave instabilities at different times, (d ) velocity of turbulent
transport, Vq , from Pantano & Jacquin (2001).

high, indicating how inefficient angular is with respect to axial turbulent production.
This holds during both the linear and the nonlinear regimes. This difference then also
holds for dissipation and diffusion which explains why q increases. After τ ' 3, the
correlation increases but soon thereafter the Reynolds stresses (and turbulence) start
to decrease due to the restabilization of the flow.

Figure 2(c) shows the temporal evolution of σ2(r, t) calculated from (2.5) by using
the averaged velocity profiles extracted from the DNS database. The initial distri-
bution of σ2(r) is close to that shown in figure 1(a) where the unstable helical per-
turbations m < 0 give rise to a collection of ‘ring modes’ located around r/r0 ≈ 0.75.
Then the unstable region breaks in two parts, as a result of a preferential extraction
of energy from the axial flow compared to the tangential flow, as discussed above.
This holds both in the linear and nonlinear (turbulent) regimes. For the linear regime,
this was clearly confirmed by inspection of the Reynolds stresses obtained from a
computation of the normal modes extracted from a stability analysis of this flow.
It is observed that an unstable region propagates towards the ‘dispersion buffer’
while the associated amplification rate decays due to stabilizing effects in the ‘dis-
persion buffer’ as advocated in the preceding section. But, as shown in figure 2(c),
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Figure 3. (a) Radial distribution of the turbulent production, P , and (b) circulation showing a 2%
overshoot propagating outward, from Pantano & Jacquin (2001).

a small instability region succeeds, beyond τ = 2.26, in reaching the vortex periph-
ery, around r/r0 = 2. This is the result of the accumulation of angular momentum
transported by turbulence. Figure 2(d ) shows the velocity of transport of turbulent
kinetic energy Vq = uruiui/uiui, see Andreopoulos & Bradshaw (1980), at the same
times as figure 2(c). It is observed that Vq ‘radiates from the instability source’ and
is well-correlated with the stability prediction of σ2 in the flow periphery: Vq reaches
a maximum value at the location where σ2 = 0 and then abruptly vanishes within
the ‘dispersion buffer’, supporting the ideas described in § 2. Figure 3(a) shows the
turbulent production profiles. At τ = 1, the perturbations grow around r ≈ 0.75r0
in accordance with figure 1(a) for q = 1. This local energy production, constrained
within the core by the ‘dispersion buffer’ is maintained up to about τ ' 2. At τ ' 3,
production of turbulence has already reached the vortex periphery beyond r/r0 = 2.
But this production is smaller than that prevailing during the initial surge (τ < 2). In
this region, the axial-flow gradient is small and the instability mechanism that results
is a centrifugal instability, see (2.1). The LES and DNS calculations of Ragab &
Sreedhar (1995) showed the emergence of a circulation overshoot of small magnitude
(2% of Γ0). This was also observed in the DNS by Qin (1998) and is also clear in
figure 3(b) obtained from the DNS of Pantano & Jacquin (2001). The propagation
of the circulation overshoot illustrated in figure 3(b) is the diffusion process by which
angular momentum may be finally transported outward, albeit at a very small rate.
The peak circulation is subjected to statistical variability due to the nature of tur-
bulence, but the value of 2% is typical and has already be found by Qin (1998).
Let us consider this diffusion mechanism. Within the temporal approximation of the
Batchelor vortex, the turbulent torque, r2Rrθ , is the only term that appears in the mean
conservation equation of V . One may easily transform this equation into one for the
deficit of angular momentum from 0 to r, J(r, t) =

∫ r
0
(1−Γ (r, t)/Γ0)r dr which is also

the second moment of vorticity J(r, t) = (2π/r2
0Γ0)

∫ r
0
r2ωr dr. This equation reads

∂J(r, t)

∂t
=

2π

Γ0

r2Rrθ(r, t) + νr3 ∂

∂r

(
1

r3

∂J

∂r
− 1

r2

)
. (3.1)

The limr→∞ J(r, t) = r̄2(t) represents the (squared) vorticity dispersion radius. From
(3.1), it can be verified that r̄2(t) obeys ∂r̄2/∂t = (2π/Γ0)r

2Rrθ(∞, t) + 4ν, which can be
integrated to give r̄2(t) = r̄2(0) + 4νt, if the turbulent torque vanishes at infinity. This
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Figure 4. Mean flow profiles (top) and circulation (bottom) in three downstream sections behind
a split wing: (a, d ) weak jet case B, (b, e) strong wake case E, (c, f ) strong jet case A; symbols:
O, z/c = 45; �, z/c = 78; 4, z/c = 109; open symbols V/W0 and Γ = 2πrV/W0c, solid symbols
∆W/W0, the total circulation is Γ0/(W0c) ≈ 0.74, from Phillips & Graham (1984).

result implies that the time evolution of the vorticity dispersion radius cannot exceed
that of a laminar vortex, which is a well-known and important result, see Saffman
(1992). Moreover, (3.1) shows that the first term on the right can lead to the develop-
ment of a transitory circulation overshoot if turbulence is able to reach the periphery.
In this context, Uberoi (1979) points out that even if the flow is initially unstable, there
is no reason to believe that it will remain unstable or generate a circulation overshoot.
We show here that this depends on the initial value of q: if q is small enough, an over-
shoot may appear. For q = 1, it turns out that the circulation overshoot is very small.

We consider now an experiment carried out by Phillips & Graham (1984) which is
one of the rare experiments containing comprehensive data on mean and turbulent
quantities in a trailing vortex. It is based on the use of a split wing with a narrow
central cylindrical body. This produces a single vortex whose core may be manipulated
by introducing a jet or producing a wake (with an obstacle) in the central body region.
This experiment was designed to produce a thick vortex core and, in contrast to wing
vortices, the vortex so obtained seems to be weakly affected by meandering effects.
Three cases among the five considered in this reference are analysed here: a weak jet,
a strong wake and a strong jet. They correspond respectively to cases B, E and A
in Phillips & Graham (1984). The profiles of the axial velocity difference, ∆W , and
of the tangential velocity, V , normalized by the free-stream velocity W0 are shown
for three sections in figure 4(a–c). The vortex core in the first measuring section is
r0 ≈ c (where c indicates the chord of the vortex-generator wings) for cases B and E,
and r0 ≈ 2c for case A. Calculation of the swirl q in the first measurement section
using (2.4) gives q ≈ 1.8 for case B, q ≈ 1.0 for case E and q ≈ 0.4 for case A. Case
A departs from the others by a very rapid evolution and is discussed later. The
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convection length scale for the development of the stability/turbulence mechanisms
described in § 2 is ∆z/c = (2πW0r0)/(V0c). For cases B and E one obtains ∆z(τ = 1)/c
close to 70 which means that only one convective time scale τ is separating the first
and last measurement sections. Figure 4(d–f ) shows the circulation deduced from
these experimental data. In the first case, the angular momentum remains frozen,
see figure 4(a, d ). This is in accordance with the fact that for q > 1.5 the flow is
stable and free from any production of turbulence. The measurements indeed show
that turbulence is weak. When the flow is forced to smaller q, both the axial and
tangential velocity components are changing downstream. In case E, see figure 4(b, e),
the changes are moderate. Angular momentum diffuses a little and the emergence of
a small overshoot can be guessed in figure 4(e) when compared to figure 4(d ). The
swirl number increases from q ≈ 1 at z/c = 45 to nearly q = 1.3 in the last section
z/c = 109. This agrees with figure 2(a) where an increase of the swirl number from
q = 1, and to 1.3 also occurs within nearly one convective time scale τ. Further
evolution towards full stability may be anticipated. For case A, which is characterized
by a very low value of q, the flow undergoes a much more dramatic change, see
figure 4(c, f ). In particular, a large overshoot is observed and could have travelled
away from the measurement region in the last section. Starting from q ≈ 0.4, a very
low value, one finds q ≈ 0.6 in the last measurement section so that the flow should
keep on evolving significantly further downstream. For such low swirl values, one may
have to consider other mechanisms than those described above. In particular, due to
the rapid axial variation of the flow, the axial and tangential velocity components
are in significant interaction through an axial pressure gradient, which puts this case
beyond the limit of applicability of a temporal approach such as that considered in
this paper. Also, a convective/absolute transition characterizes a Batchelor vortex for
such low values of q, see Olendraru & Sellier (2002). However, it may be noted that
the evolution of this flow amounts to an amplification of the mechanisms that prevail
for mild values of q, i.e. increase of short-wave stability (increase of q) and transport
of angular momentum by a circulation overshoot. To sum-up, this experiment shows
that a vortex evolves towards an equilibrium state corresponding to q > 1.5 and it
then becomes persistent; starting from a low enough value of the swirl parameter q
(typically smaller than 1), turbulence may lead to diffusion of angular momentum
ensured by a propagating circulation overshoot.

4. Conclusions
Considering a Batchelor vortex, a model for trailing vortices, it is shown that

the resistance of vortices to turbulent transport is associated with their short-wave
stability properties. Depending on the magnitude of the swirl parameter, q, the
turbulence generated at the core has to overcome a ‘dispersion buffer’ that lies
adjacent to the vortex core before turbulent perturbations can reach the periphery
of the vortex. When they reach this region, the perturbations are transformed into
propagating waves which almost do not interact with the basic tangential field. This,
together with the rotation-induced difference in energy extraction by turbulence from
axial and tangential velocity fields, result in a progressive damping of the axial shear
in the vortex core while angular momentum is maintained; the stability of the flow
increases and turbulence is progressively eliminated from the vortex by dissipation.
DNS and experimental results are analysed and shown to agree with this conclusion.
In the case where the vortex is far from equilibrium, that is when q is small enough,
turbulence may succeed in breaking stability and diffusing angular momentum. This
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diffusion is only significant for vortices with q smaller than unity. Further investigation
of the effects of turbulence in vortices within this regime is needed.

This work was supported by ONERA Federated Research Project on ‘Wake Vortex
Dynamics’. We are grateful to David Fabre for fruitful comments. A preliminary
version was presented in the EUROMECH Colloquium No 433 on ‘Dynamics of
Trailing Vortices’, RWTH Aachen, March 21–22, 2002.
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